Methane hydrate is a
naturally occurring, unconventional source of natural gas. Large volumes of potential gas resources
exist in hydrate deposits in some deep-sea and arctic environments, but at the
present time, technology for commercial production of methane hydrates does not
exist.
Figure 1. Burning methane hydrate.
Methane hydrate is a solid, crystalline form of methane and
water, similar in appearance to ice.
Gas hydrates (also known as gas clathrates) are generally stable at
temperatures below 40 degrees Fahrenheit and pressures higher than 1000
psi. Hydrates are a familiar nuisance to
petroleum engineers. Hydrates will form
in cold production flowlines, wherever temperature and pressure is conducive for
the formation of hydrates. Hydrates
create flow obstructions or ice plugs; glycol anti-freeze is commonly injected
for flow assurance.
Gas hydrates, due to their solid, crystalline form, are very
dense, concentrated forms of methane.
Gas hydrates contain 165 times more methane by volume than natural gas
at surface pressure. The volume of gas
resource trapped in hydrates is large, but uncertain.
Natural deposits of hydrates occur wherever natural gas and
water meet at appropriate temperature and pressure. This generally happens in deep water and
within a few thousand feet of the surface in arctic environments. Hydrates are found in the deepwater Gulf of
Mexico, on the Blake Ridge offshore North Carolina, offshore West Africa, in
the Sea of Japan, and in a variety of arctic petroleum basins, including the
Alaskan North Slope.
Japan is preparing to test an experimental offshore hydrate
production well, using a production process tested in Canada in 2008 (Petroleum
News, February 17, 2013). Proposed
production rates are minimal and only intended to demonstrate the technology.
Commercial production of gas hydrates was reported some
years ago in a gas field in the Russian far north (IHS Energy). Wells produce free gas from a reservoir below
a gas hydrate cap. As pressure in the
reservoir declines, methane is released from the hydrates. Gas recovery volumes are reported to
indicate a contribution from the hydrate cap, but documentation is not available.
Deep Sea Gas Hydrates
The majority of known gas hydrate occurrences are in the
deep ocean. There, pressures and
temperatures are favorable to the formation of hydrates. Many gas hydrate sites are known from direct
sampling at the sea-floor, or in shallow cores.
Hydrate sites are especially well-known in the Gulf of Mexico, where
they occur over methane and petroleum seeps.
These seeps often occur in association with oil fields at depth, so they
have necessarily been studied thoroughly in the course of exploration and
development of oil fields in the Gulf of Mexico. Chemosynthetic biological communities also
frequently occur at petroleum seeps, and require surveys and protection from
disturbance due to oil drilling.
Gas hydrates are also known from seismic studies indicating
the existence of hydrates. The typical seismic
indication is that of a “bottom-simulating reflector”, i.e., a seismic
reflection parallel to the sea-floor, but not in conformance with the layering
of the stratigraphy. The
bottom-simulating reflector represents the phase change from gas hydrate to
water and gas, due to increasing temperature with depth. The density change at the phase boundary is
sufficient to cause an acoustic reflection.
Gas hydrates in the deep marine environment may serve as a seal
for trapping oil and gas, or enhance the sealing capacity of an existing
seal. Such a trap might provide prospective
potential very near the sea-floor. On
Blake Ridge offshore North Carolina, seismic studies indicate the likelihood of
free gas below the gas hydrate, on a diapiric structure. The gas hydrates near the sea floor probably
enhanced the trapping characteristics of the diapir.
Figure 2. Seismic displays indicating the probable existence of free gas trapped by gas hydrates on the Blake Ridge, offshore North Carolina (Taylor et al, 1999).
Gas Hydrates and
Glaciation
The stability field of gas hydrates (low temperature,
high-pressure) suggests an interesting possibility during recent geologic
history. Conditions favorable for the
formation of hydrates must exist at the base of thick glacial ice. During ice-age glaciation, conditions favorable
for the formation of hydrates existed over large areas covered by continental
ice sheets. Where ice sheets covered
gas-prone sedimentary basins, it seems inevitable that substantial volumes of
hydrates would accumulate under the glacial ice.
Figure 3. Methane Hydrate Stability Fields below glacial ice. Gas hydrates will persist in the subsurface to a depth of about one kilometer below the ice.
Methane gas is normally produced in sedimentary basins, from both thermal alteration or biodegradation of organic matter (principally woody vegetation). Methane rising naturally to the ground surface would be converted to gas hydrate near the base of the glacier. Hydrates would accumulate over gas seeps throughout the period of the ice age, and would subsequently melt during deglaciation due to pressure release.
Figure 4. Petroleum Basin under continental ice sheets during the most recent glaciation.
Scientists exploring the sub-glacial lake Vostok in
Antarctica expect gas hydrates to occur in or under the lake, due to the cold
temperatures and high pressures present under four kilometers of ice. Lake Vostok, a crescent-shaped rift lake, is
a likely environment for the existence of petroleum source rock and thermally
generated methane. [Schematic diagrams
showing hydrates invariably show the bulk of the hydrates at the bottom of the
lake, for unknown reasons. The bulk of
the gas hydrate should be expected to be methane hydrate, which is lighter than
water, and will rise to the top of the lake, at the base of the glacier.
Figure 5. Schematic of ice-core drilling on Lake Vostok, Antarctica.
During the most recent glacial period (about 100,000 years
ago to 10,000 years ago), continental ice sheets covered a number of sedimentary
petroleum basins, which were actively generating methane. Where ice sheets covered these basins, gas
hydrates would have been created. When
the ice melted, the gas hydrates would have disappeared; more from the loss of
pressure than the change in temperature.
It is interesting to look at gas fields on the Alaska’s Kenai Peninsula,
which may carry remnant signs of the former existence of hydrates. Gas fields in this basin are often marked by
low ground and wetlands immediately overlying the field (an observation pointed out to me by geologist Matt McCullough); and fields are marked
by strong “gas chimney” seismic effects, due to large amounts of irreducible
methane trapped in near-surface sediments.
Both of these features may reflect the previous existence of methane
hydrates over the field.
Figure 6. Area of Kenai Gas Field, Alaska, and overlying wetlands.
Risks of Gas Hydrate
Production
Production of gas hydrate deposits carries the risk of depressurization and uncontrolled release of methane. Once gas is released, it reduces the pressure
on the hydrate reservoir, in a process similar to a geyser or a well
blowout. Such a depressurization, once
initiated, might be impossible to stop.
Craters on the Blake Ridge
indicate that a depressurization event occurred in the distant past, possibly releasing
a volume of methane capable of affecting the global climate.
---------
References:
---------
References:
Methane Hydrates
Marine Hydrates
Marine Gas Hydrates and Their Global Distribution
Lake Vostok
Glaciation
Svendsen,
J. et al.,
2004, Late Quaternary ice sheet history of Eurasia. Quaternary Science Reviews,
doi:10.1016/j.quascirev.2003.12.008)
Hydrostatic gradient == 981 kPascals per 100 meters